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1. INTRODUCTION

Let A� :=(A0 , A1) be a compatible couple of quasi-normed spaces and let
us consider the K-functional (see [7]),

K(t, a; A� )=inf[&a0 &A0
+t &a1&A1

: a=a0+a1].

For 0<%<1 and 0<q�� the classical real interpolation spaces are
constructed as

(A0 , A1)%, q=[a # A0+A1 : K( } , a; A� ) # L%
q],
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where L%
q is the weighted Lq space with weight t&% with respect to the

measure dt�t and

&a&%, q :=&K( } , a; A� )&Lq
%=\|

�

0
[t&%K(t, a; A� )]q dt

t +
1�q

.

One of the most important formulas that connects these spaces and
reiteration theorems is the so-called Holmstedt formula, see [7]. This
formula relates the K-functional of the couple ((A0 , A1)%0 , q0

, (A0 , A1)%1 , q1
)

with the K-functional of the function K( } , a; A� ) itself with respect to the
couple (L%0

q0
, L%1

q1
).

There have been many important extensions of Holmstedt's formula. Let
us mention, for example, those concerning K-spaces: given L0 the space of
real valued Lebesgue measurable functions on R+=(0, �) and given a
lattice E/L0 so that min(1, t) # E, the K-space, defined by

(A0 , A1)E; K=[a # A0+A1 : K( } , a; A� ) # E],

is a quasi-normed space under the norm &a&A� E; K
:=&K( } , a; A� )&E . Then,

under some conditions on the couple E� :=(E0 , E1), the following formula
is obtained in [25]:

K(t, a; A� E0 ; K , A� E1 ; K)rK(t, K( } , a; A� ); E0 , E1). (1)

In order to prove such a formula, one needs to use the fact that every
couple A� is K-divisible, see [8].

The concavity property of the K-functional is fundamental for this theory.
Now, if we change the cone of concave functions by the cone of decreasing
functions in R+, we may deal with other classes of spaces including
rearrangement invariant spaces. For example, given a function space E, we
can define E* to be the space of all measurable functions so that f * # E
with & f &E*=& f *&E , and hence one may try to find the connection
between the K-functional K(t, f; E0*, E1*) and K(t, f *; E0 , E1). Many
results have already been obtained in this direction (see [1, 19, 20, 22�25,
29, 30]), and in order to prove them one has to deal with some kind of
divisibility property; see [25].

The situation is much different if we are interested in a finite family
A� =(A0 , ..., An) instead of a couple, since there are very few examples of
finite families satisfying the K-divisibility property, see [8]. It was shown
by Asekritova that even the simple family of weighted L1 spaces is not
K-divisible, see [8, p. 676]. Moreover, Asekritova and Krugljak [4] have
recently proved the somewhat surprising result that in the case of finite
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families of functional Banach lattices the analogue of the equivalence
theorem

K%, q=J%, q

in fact holds. The proof of this result is based on an analogue of the classical
fundamental lemma (with Caldero� n operator). This result contains implicitly
the interesting fact that (n+1)-tuples of functional Banach lattices possess
the K-divisibility with the squared Caldero� n operator. This fact shows that
it can be of interest to study K-divisibility with ``operators,'' cf. the discus-
sion on weak K-divisibility in Section 2.

The above considerations lead us to extend the concept of K-divisibility
to the setting of an operator

S: U � P,

where U is an additive group and P is a cone of positive functions, which
works not only for couples but also for finite families. Although for our
applications it will be enough to consider the cone of concave and the cone
of decreasing functions, we think that this setting makes things easier and,
on the other hand, it has other applications of independent interest (see
[9]). Moreover, we note that Asekritova has in [2] stated (without proof)
formulas, like those in our Theorems 5 and 6. We obtain these just as a
consequence of our results from Section 2.

Let us establish some notation. As usual, L0(0) denotes the set of all
real-valued measurable functions defined on a _-finite measure space
(0, 7, +). By L� 0 we mean L0 together with the constant function +� and
by R+ we mean (0, �) together with the Lebesgue measure.

A function lattice E is understood to be a quasi-normed space in L0(0)
which satisfies that if | f |�| g| a.e. and g # E then f # E and & f &�&g&.

We will consider an arbitrary nonempty cone P of L0(0), i.e., P+P/P
and R+ } P/P, and we shall assume that the functions in P take nonnegative
values. To this cone, we associate the sublinear operator P� : L0 � L� 0 defined
as

P� f :=inf[g # P: | f |�g],

where P� f=+� when no g # P majorizes | f | and we assume that P� f is
measurable. For a function lattice E, we define

EP :=[ f # L0 : P� f # E],

which will be a function lattice under the quasi-norm

& f &E P :=&P� f &E .
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Clearly, we have EP/�E, and if P� is bounded from E into E, then E=E P.
Set E� P :=(E P

0 , ..., E P
n ), and throughout the paper we assume, when work-

ing with E� P, that

P� f # P for all f # . E P
i . (2)

We remark that when working with the cone of concave or decreasing
functions this hypothesis is always satisfied. But since this is not the case
for a general cone, we need to assume it to be able to formulate our results
in its whole generality.

Let us define, for x, y # 0,

hP(x, y) :=inf { f ( y)
f (x)

: f # P, f (x){0= .

In what follows the function hP will be of crucial importance. In our cases,
we have that hP(x, } ) is measurable for almost all x and that g j (x) :=
&hP(x, } )&Ej

is measurable. In the general case we have to assume this.
For our purpose, let us write C for the cone of positive concave functions

on R+ and D for the cone of positive decreasing functions on R+. We have
that

hC(x, y)=min \1,
y
x+ and hD(x, y)=/(0, x]( y),

and we recall that if E is rearrangement invariant, then

g(x) :=&hD(x, } )&E

is the fundamental function of E.
We also need to recall the definition of the K-functional for an (n+1)-

tuple of spaces X� :=(X0 , ..., Xn), all linearly embedded in a vector space X.
For a # 7(X� ) :=X0+ } } } +Xn and t� :=(t0 , ..., tn), ti>0, the K-functional is
defined as

K(t� , a; X� )=inf { :
n

i=0

ti &ai&Xi
: a= :

n

i=0

a i , a i # Xi = .

Throughout, the convention that & f &X=+� for f � X will be used.
We write f�g or g- f if there exists a strictly positive constant M such

that for all x, f (x)�Mg(x). If f�g and g� f, the functions are said to be
equivalent and we write frg.

The paper is organized as follows. Section 2 contains the main results of
this work, namely the introduction and investigation of the S-divisibility
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property. In particular, Holmstedt's formula is extended to this setting. In
Section 3, we apply these results to study the K-functional for K-, rearrange-
ment invariant, some symmetric, Lorentz, and weighted lp spaces.

For those readers which are only interested in interpolation of couples
we suggest reading the text in that context and to skip Sections 3.1 and 3.2.

2. S-DIVISIBILITY PROPERTY AND SOME OF
ITS CONSEQUENCES

In this section, we will prove a Holmstedt-type formula which generalizes
results of Holmstedt [15], Brudnyi and Krugljak [8], Nilsson [25], and
Asekritova [2].

Let P be a cone and S an operator of the type

S: U � P,

where U is an additive group. Let us assume that S satisfies the sublinearity
property

S(a0+ } } } +an)�T(S(a0))+ } } } +T(S(an)),

for some operator T : P � P.
Given a lattice E, let us define the space UE; S as

UE; S :=[a # U: Sa # E], &a&UE; S
:=&Sa&E .

Note that & }&UE; S
need not be a norm nor UE; S need even be a group. In

particular, if U=� (A� ) and (Sa)(t)=K(t, a; A� ), then UE; S is the usual
K-space and if U=L0(0) and Sf =f *, UE; S=E* as defined in Section 1.

Then, in order to derive an expression of the K-functional for the family
UE� ; S :=(UE0 ; S , ..., UEn ; S), where E� :=(E0 , ..., En) is a compatible tuple of
lattices, we need to extend the notion of K-divisibility as follows:

Definition 1. Let S: U � P be defined as above. Then U is said to be
S-divisible with respect to P and the (n+1)-tuple of lattices E� if, for every
a # U and f0 , ..., fn # P, for which

Sa� f0+ } } } + fn ,

there exists ai # U such that

a=a0+ } } } +an ,
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and

&Sai&Ei
�M & f i&Ei

,

for a constant M independent on a and fi .

Let us mention some known examples of S-divisibility.

(1) K-divisibility (see [8]). A� =(A0 , ..., Am) is K-divisible if, for every
a and f0 , ..., fn # C, such that

K( } , a; A� )� f0+ } } } + fn ,

there exists ai # � (A� ) satisfying

a=a0+ } } } +an , and K( } , ai ; A� )� fi .

Hence, if A� is K-divisible and S is the K-functional, we find that U=� (A� )
is S-divisible with respect to C and all (n+1)-tuples of lattices on Rm

+ .

(2) Weak K-divisibility (see [3]). A� =(A0 , ..., An) is said to be weak
K-divisible if, for every a and every f0 , ..., fn # C$, where C$ is the cone of
positive concave functions on Rm

+ , such that

K( } , a; A� )� f0+ } } } + fn ,

there exists ai # � (A� ) satisfying

a=a0+ } } } +an , and K( } , ai ; A� )�Rfi ,

where

R( f )(t1 , ..., tm) :=|
R

m
+

min {1,
t1

s1

, ...,
tm

sm = f (s1 , ..., sm)
ds1

s1

} } }
dsm

sm
.

Hence, if A� is weak K-divisible and S is the K-functional, we see that
U=� (A� ) is S-divisible with respect to C and the (n+1)-tuples consisting
of lattices on which R is bounded.

In [4] it was implicitly shown that all (n+1)-tuples of functional Banach
lattices possesses this property of weak K-divisibility for all a # � (A� ) such
that

[R2K( } , a; A� )](1)<+�,

if R is replaced with R2.
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(3) E-divisibility (see [25]). Let A� =(A0 , A1) be a couple of p-normed
complete abelian groups and let us consider the E-functional

E(t, a; A� ) :=inf[&a&b&A0
: &b&A1

�t].

Let �E (A� ) denote the subset of � (A� ) for which E( } , a; A� ) is finite
everywhere.

Then, A� is said to be E-divisible if, for every a and every f0 , f1 # D$ :=
[ f # D: f (t) � 0 as t � �], such that

E( } , a; A� )� f0+ f1 ,

there exists ai # �A (A� ) satisfying

a=a0+a1 , and E( } , ai ; A� )� fi ( } �c),

for a constant c. In [25], it is proved that all couples of this type are
E-divisible. Hence, if S is the E-functional, U=�E (A� ) is S-divisible with
respect to the cone D$ and all couples of lattices on which the dilation is
bounded.

More examples of S-divisibility can be found in the next section.
First we prove the following Holmstedt type formula which generalizes

results of Holmstedt [15], Brudyi and Krugljak [8], Nilsson [25] and
Asekritova [2].

Theorem 2. Let U be S-divisible with respect to P and E� . If &Tf &Ei
�

& f &Ei
for all f # P & Ei , then

K(t� , a; UE� ; S)rK(t� , Sa; E� P). (3)

Proof. Let a=�n
i=0 ai . Then Sa��n

i=0 TSai and, hence,

K(t� , Sa; E� P)�K \t� , :
n

i=0

TSai ; E� P+� :
n

i=0

ti &TSa i&E i
P= :

n

i=0

t i &TSa i &Ei

� :
n

i=0

t i &Sa i&Ei
= :

n

i=0

t i &ai&UEi ; S
.

Conversely, let Sa= f0+ } } } + fn . Therefore Sa�P� f0+ } } } +P� fn and hence,
by the S-divisibility property, there exists a decomposition a=�n

i=0 ai and
gi # P such that Sai �gi and &gi&Ei

�&P� fi &Ei
. Then we have that
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K(t� , a; UE� ; S)� :
n

i=0

t i &ai&UEi ; S
= :

n

i=0

t i &Sai&Ei
� :

n

i=0

t i &gi&Ei

� :
n

i=0

ti &P� f i&Ei
= :

n

i=0

t i & fi&E i
P ,

and the proof is complete. K

By applying the quasi-norm of a function lattice G, we immediately get
the following reiteration result:

(UE� ; S)G; K=U(E� P )G; K ; S .

If we now want to find an explicit formula for K(t� , a; UE� ; S), we can
restrict ourselves to get such a formula for K(t� , f; E� P) with f not an
arbitrary function but a function in the cone P.

For this purpose it will be enough to find an ``almost optimal'' decom-
position for f in the following sense: For a given c>0, we say that f =f0

+ } } } + fn is an almost optimal decomposition if

:
n

i=0

ti & fi&Ei
�cK(t� , f, E� ).

We recall that the original Holmstedt's formula expresses not only a
connection between

K(t, a; A� %0 , p0
, A� %1 , p1

) and K(t, K( } , a; A� ); L%0
p0

, L%1
p1

)

but also an almost optimal decomposition of the type

K( } , a; A� )=K( } , a; A� ) /(0, bt )+K( } , a; A� ) /[bt , �)

is found. Our next purpose is to deal with this type of almost optimal
decompositions for f # P.

Theorem 3. Let E� be an (n+1)-tuple of lattices which satisfies that, for
f # P,

K(t� , f; E� )rinf { :
n

i=0

ti & fi&Ei
: f� f0+ } } } + fn , fi # P= . (4)

If there exist measurable sets Bi (t� ) such that �n
i=0 Bi (t� )=0 and

sup
t�

t i

t j
&/Bi (t� )

�gj&Ei
<�, i{ j,
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where gj (x) :=&hP(x, } )&Ej
, then

K(t� , f; E� )r :
n

i=0

t i & f/Bi (t� )
&Ei

,

for all f # P.

Proof. Obviously � holds. Conversely, let us take f� f0+ } } } + fn ,
fi # P arbitrary, Then,

:
n

i=0

ti & f/Bi (t� )
&Ei

� :
n

i=0

ti &( f0+ } } } + fn) /Bi (t� )
&Ei

� :
n

i=0

ti & f i&Ei
+ :

i{ j

qij ,

where qij :=ti & f j/Bi (t� )
&Ei

. The proof will follow if we prove that qij �

tj & fj &Ej
. In fact, since f j # P, we see that fj (x) hP(x, y)� f j ( y) and, hence,

fj (x) gj (x)�& fj&Ej
. Therefore

qij�ti &/Bi (t� ) & fj&Ej
�g j&Ei

=t j & f j&Ej

t i

t j
&/Bi (t� ) �gj &Ei

�t j & f j&Ej
,

and the proof is complete. K

Combining the information from Theorems 2 and 3 we also obtain the
following result.

Theorem 4. Let U be S-divisible with respect to P and E� , and assume
that &Tf &Ei

�& f &Ei
for all f # P & Ei .

If there exist measurable sets Bi (t� ) such that �n
i=0 Bi (t� )=0 and

sup
t�

t i

t j
&/Bi (t� )

�gj&E i
P<�, i{ j, (5)

where gj (x)=&hP(x, } )&E j
P , then

K(t� , a; UE� ; S)r :
n

i=0

t i&Sa/Bi (t� )
&Ei

P .

Proof. According to Theorems 2 and 3, we only have to check that
condition (4) is satisfied, and this follows immediately by the sublinearity
of P� and the lattice property of the K-functional together with our assump-
tion (2). K
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3. APPLICATIONS AND FURTHER RESULTS

In this section we present some applications and further results related
to the theory developed in the previous section.

3.1. On Asekritova's Holmstedt Type Formula

Let C$ be the cone of positive concave functions on Rm
+ . Then one can

easily see that

hC$(x, y)=min {1,
y1

x1

, ...,
ym

xm= .

Moreover, it follows from [8] that if L� :=(L� , L t1
� , ..., Ltm

�) where
Lti

�=L�(w) with w(t)=1�t i , we have that

& f &E C $=& f &L� E; K
,

and, hence, we can obtain as an immediate application of Theorem 4, the
following generalized Holmstedt formula stated in [2]:

Theorem 5. Let A� :=(A0 , ..., Am) be a K-divisible (m+1)-tuple of Banach
spaces and E� :=(E0 , ..., En) an (n+1)-tuple of Banach lattices on Rm

+ such
that min(1, t1 , ..., tm) # Ei .

If there exist measurable sets Bi (t� ) such that �n
i=0 Bi (t� )=Rm

+ and

sup
t�

t i

t j
&/Bi (t� )

�gj&L� E; K
<�, i{ j,

then

K(t� , a; A� E0 ; K , ..., A� En ; K)r :
n

i=0

ti &K( } , a; A� ) /Bi (t� )
&L� E; K

.

Moreover, using Theorem 4, we can also derive the following description
of the K-functional for the (n+1)-tuple

((X, Y)%0 , q0
, ..., (X, Y )%n , qn

)

(see also [2]).

Theorem 6. Let 0�%0< } } } <%n�1 and 1�qi�� (q0=� if %0=0
and qn=� if %n=1). Then

K(t� , a; (X, Y)%0 , q0
, ..., (X, Y )%n , qn

)r :
n

i=0

ti &K( } , a; X, Y ) /Bi (t� )
&L%i

qi
, (6)

10 CARRO, ERICSSON, AND PERSSON



where

Bi (t� ) :={s # R+: s%j&%i�
t j

ti
, j=0, ..., n= .

Moreover, if %0=0 (or %n=1), then the first (resp. the last) term in the sum
can be removed but not both at the same time.

Proof. First we note that

gi (s) :=&hC(s, } )&(L%i
qi

) C=&hC(s, } )&L%i
qi

rs&%i,

and, hence,

&/[xi , yi ]
�gj &(L%i

qi
)C �{y%j&%i

i ,
x%j&%i

i ,
i< j,
i> j.

Therefore, if we take Bi=[xi , yi] with

xi :=max
j<i

[(tj �ti)
1�(%j&%i )] and y i :=min

j>i
[(t j �ti)

1�(%j&%i )]

(Bi=, if xi> yi), we find that condition (5) holds and since, by induction
over n, one can easily see that �n

i=0 Bi=R+, we have that the hypotheses
of Theorem 4 are satisfied!

We have then to show that

:
n

i=0

ti &K( } , a; X, Y) /Bi(t� )
&(L %i

qi
) C r :

n

i=0

t i &K( } , a; X, Y) /Bi (t� ) &L %i
qi
.

Of course only the approximative inequality � has to be considered. We
have that

&K( } , a; X, Y ) /Bi (t� )
&(L %i

qi
) C rx&%i

i K(xi , a; X, Y )+ y&%i
i K( yi , a; X, Y)

+&K( } , a; X, Y) /Bi (t� )
&L %i

qi
,

and, hence, we must prove that

ti x&%i
i K(xi , a; X, Y )� :

n

i=0

t i&K( } , a; X, Y ) /Bi (t� )
&L %i

qi
,

and

ti y&%i
i K( yi , a; X, Y )� :

n

i=0

t i &K( } , a; X, Y) /Bi (t� ) &L %i
qi
.
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For qi=�, this is clear and otherwise we consider two cases:

(i) If 2xi< yi , then, by using the concavity property of the K-func-
tional, we find that

|
yi

xi

[s&%i K(s, a)]qi
ds
s

�K(x i , a)qi |
yi

xi

s&%i qi&1 ds

rK(xi , a)qi [x&%i qi
i & y&%i qi

i ]

�K(xi , a)qi [x&%i qi
i &(2xi)

&%iqi ]r[x&%i
i K(xi , a)]qi,

and similarly for the other estimate.

(ii) Let us now assume that 2xi� yi , and let Bj be the interval left of
Bi , i.e., yj=xi . Since xi # Bj & Bi , we have x%j&%i

i =tj �ti and hence

ti y&%i
i K( yi , a; X, Y)rt ix&%i

i K(x i , a; X, Y )=t jy&%j
j K( yj , a; X, Y ).

In this way we have moved one interval to the left. If also 2x j� yj we
repeat the same procedure again and since 2x0=0< y0 this process will
stop after finite many steps.

To prove the last part of the theorem, let us assume that %n=1 (the case
%0=0 follows similarly). We want to prove that

tn x&1
n K(xn , a; X, Y )� :

n&1

i=0

ti&K( } , a; X, Y) /Bi (t� )
&L %i

qi
. (7)

Let Bik
, k=0, ..., l, be the nonempty sets Bi . Now, by the concavity

property of the K-functional and the fact that ti x&%i
i =tjy&%j

j if Bj is the
interval left to Bi , we have that

:
n&1

i=0

ti &K( } , a; X, Y ) /Bi (t� )
&L %i

qi
-x&1

n K(xn , a; X, Y ) :
l&1

k=0

t ik
( y1&%ik

ik
&x1&%ik

ik
)

=x&1
n K(xn , a; X, Y) til&1

y1&%il&1
il&1

=tnx&1
n K(xn , a; X, Y),

and (7) follows. K

Let us now consider the finite family

(X, (X, Y)%1 , q1
, ..., (X, Y )%n&1 , qn&1

, Y).
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A formula for the K-functional for this family can be obtained as follows:
First we have to check that

K(t� , a; X, A1 , ..., An&1 , Y )=K(t� , a; X c, A1 , ..., An&1 , Y c),

where X c and Y c are the Gagliardo completions of X and Y with respect
to X+Y. This follows similarly as for the case with pairs, (see e.g. [6]).
Now it only remains to recall that X c=(X, Y )0, � and Y c=(X, Y )1, � , and
the previous result applies.

3.2. The K-Functional for Rearrangement Invariant Spaces

As usual, by rearrangement invariant spaces (r.i), we mean quasi-normed
lattices E defined on R+ which are complete and satisfying & f &E=& f *&E .
Let us consider (n+1)-tuples E� of r.i. and let us recall that, as it was
mentioned in the introduction, the fundamental function gi is defined by

gi (x)=&/(0, x] &Ei
=&hD(x, } )&Ei

.

It is known (see [17, 11]) that for a couple E� of r.i.

K(t, f; E� )rK(t, f *, E� ),

and this equivalence can easily be extended to the case of a finite family of
r.i. Moreover, it follows from a result in [16] that the dilation operator is
bounded on these spaces.

Using these facts together with our Theorem 3, we are able to extend
some of the results in [13, 19 and 22].

Theorem 7. Let E� :=(E0 , ..., En) be an (n+1)-tuple of r.i. and let gi be
the fundamental function of Ei , i=0, ..., n. If there exist measurable sets
Bi (t� ) such that �n

i=0 Bi (t� )=R+ and

sup
t�

t i

t j
&/Bi (t� )

�gj&Ei
<�, i{ j, (8)

then

K(t� , f; E� )r :
n

i=0

t i & f */Bi (t� )&Ei
.

Proof. In view of our Theorem 3, we only need to prove that

K(t� , f *; E� )rinf { :
n

i=0

ti & fi&Ei
: f *� f0+ } } } + fn , f i # D= . (9)
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Let f *� f0+ } } } + fn , fi # D. Then

K(t� , f *; E� )�K \t� , :
n

i=0

fi ; E� +� :
n

i=0

t i & f i&Ei
,

and the inequality � in (9) follows. Conversely, if f *= f0+ } } } + fn , then
we have that

f *� f0*( } �n)+ } } } + fn*( } �n)

and, hence, the right-hand side of (9) is not bigger than

:
n

i=0

ti & fi*( } �n)&Ei
� :

n

i=0

ti & f i*&Ei
= :

n

i=0

t i & f i&Ei
.

By taking the infimum over all f *= f0+ } } } + fn , we have also proved the
approximative inequality - in (9) and we are done. K

As an application to the setting of Lp(R
+) spaces, we get the following

extension of the Holmstedt formula (see also [13]).

Corollary 8. Let 0<p0< } } } <pn��. Then

K(t� , f; Lp0
, ..., Lpn

)r :
n

i=0

ti & f */Bi (t� )&Lpi
,

where

Bi (t� ) :={s # R+: s1�pi&1�pj�
t j

ti
, j=0, ..., n= .

Proof. According to Theorem 7, we only have to check that condition
(8) is satisfied. Let us take Bi (t� ) :=[xi , yi] with

xi=max
j<i

[(t j �ti)
( pi pj )�( pj& pi )] and yi=min

i< j
[(t j �ti)

( pi pj )�( pj& pi )],

Bi=, if xi> yi . Then, by induction over n, one can easily see that
�n

i=0 Bi (t� )=R+. Moreover, since g i (s)=s1�pi, we find that

ti

tj
&/Bi (t� ) �gj&Lpi

�
t i

tj
x1�pi&1�pj

i , for j<i,

14 CARRO, ERICSSON, AND PERSSON



and

ti

tj
&/Bi (t� ) �gj&Lpi

�
t i

tj
y1�pi&1�pj

i , for i< j,

and hence (8) holds. K

3.3. The K-Functional for Some Symmetric Spaces

For a given lattice E on which the dilation operator is bounded, we let
E* be the symmetric space of all measurable functions f on 0 so that
f * # E under the quasi-norm

& f &E*=& f *&E .

In order to be able to deal with an expression for K(t, f; E0*, E1*), we will
prove the following lemma of independent interest. In particular it shows
that L0(0) is S-divisible with respect to the cone D and all pairs of lattices
E� on R+, where Sf =f *.

Lemma 9. Let f: 0 � [0, �) be a measurable function and let us assume
that there exist two decreasing functions, f0 and f1 , so that

f *� f0+ f1 .

Then, there exist two measurable functions gj : 0 � [0, �), j=0, 1, such that
f =g0+ g1 and gj*� f j , j=0, 1.

Proof. First we observe that using the decomposition property of the
cone of decreasing functions (see [9] and [12]) we can assume, without
loss of generality, that f *= f0+ f1 .

Let us first assume that the measure space (0, 7, +) is resonant and let
:=limt � � f *(t). If :=0 the result follows from the fact (see [6] and
[27]) that there exists a measure preserving transformation _ such that
f =f * b _ and hence taking gj= fj b _ and we are done.

Now, if :>0, we have that +(0)=� and, :=:0+:1 where :j=
limt � � f j (t). Let E=[x # 0: f (x)>:] and let F=( f &:) /E . Then

F*= f *&:=( f0&:0)+( f1&:1)=h0+h1 .

Since limt � � F*(t)=0, we have that there exist Gj so that F=G0+G1

and Gj*�hj for j=0, 1. Set

gj=(Gj+:j) /E+
:j

:
f/0"E .
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Then g0+ g1=(F+:) /E+ f/0"E= f. Let us now show that gj*� f j ;
equivalently *gj

�*fj
. If 0<s<: j we have that *fj

(s)=� and

+[x # 0: gj (x)>s]=+(E)++ {x # 0"E: f (x)>
:s
: j=

=+ {x # 0: f (x)>
:s
:j ==�,

and, if s>:j

+[x # 0: gj (x)>s]=+[x # E: Gj (x)+:j>s]++ {x # 0"E: f (x)>
:s
:j=

=*Gj
(s&:j)�*hj

(s&:j)=*fj
(s).

Let us now remark that, by the construction, one can easily see that if
c>0 and Ec=[x # 0: f (x)=c] has positive measure, then gj are constant
on Ec .

Finally, for a general _-finite measure space, we use the method of
retracts (see [6]), which enables us to embed the space (0, 7, +) into a
nonatomic (and hence resonant) measure space (0� , 7� , +� ) in the following
way: Let us write

0=00 _ \.
n

An+ ,

where 00 is nonatomic and each An is an atom of finite positive measure.
Now we can consider 0� =00 _ (�n In) where In are pairwise disjoint inter-
vals with |In |=+(An) and In also disjoint with 00 . Then

+� (E)=+(E & 00)+:
n

|E & In |,

defines a nonatomic measure on 0� . Moreover, for a given function f on
(0, 7, +) the function =( f ) on (0� , 7� , +� ), defined by =( f )= f on 00 and on
In it is defined as the constant value f on each An , satisfies =( f )*+� = f *+ .

Using the previous argument, we can find hj on (0� , 7� , +� ) so that hj*� fj

and =( f )=h0+h1 . Since =( f ) is constant on In , we obtain that hj are also
constant on it and therefore f =g0+ g1 , where gj=hj on 00 and on An gj

equals the constant value of hj on In . Since gj*� f j , we are done. K

Therefore, by Theorem 2 and the previous lemma we have that

K(t, f; E0*, E1*)rK(t, f *; E D
0 , E D

1 ),
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which, under some suitable assumption on E� , leads us to the description

K(t, f; E0*, E1*)rK(t, f *; E0 , E1)

(see [25]). In the particular case that E0 and E1 are rearrangement
invariant Banach space in (0, �), the description of the above K-functional
has recently been given in [5].

As a first application of the above lemma we have

Theorem 10. If the dilation operator is bounded on E, then we have

K(.(t), f, E*, L�)r& f */(0, t) &E ,

where .(t)=&/(0, t) &E .

Proof. It holds that

K(.(t), f, E*, L�)= inf
*>0

[&( | f |&*)+ &E*+*.(t)]

= inf
*>0

[&( f *&*)+&E+*.(t)]

� inf
*>0

sup
$>0

[&( f *&*)+ /(0, $) &E+*.(t)]

- inf
*>0

sup
$>0

& f */(0, $)&E&*.($)+*.(t)

�& f */(0, t) &E .

Conversely, according to Theorem 2, it yields that

K(.(t), f, E*, L�)rK(.(t), f *, E D, (L�)D).

Hence,

K(.(t), f, E*, L�)�& f */(0, t) &ED+.(t) & f */[t, �) &(L� ) D

=& f */(0, t) &E+.(t) & f */[t, �)&L�
.

Thus

K(.(t), f, E*, L�)�& f */(0, t) &E+.(t) f *(t)�& f */ (0, t)&E ,

and the proof is complete. K
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We now turn to weighted Lorentz spaces. Let 0<p<�, let w be a
positive, locally integrable function and

W(t) :=|
t

0
w(x) dx.

The weighted Lorentz space 4 p(w) is defined to be the set of all measurable
functions such that

& f &4 p(w) :=\|
�

0
f *(x) p w(x) dx+

1�p

<+�.

We assume that W satisfies the 22 -condition and hence & f &4p(w) defines
a quasi-norm, see [10].

Our aim is to give a formula for the K-functional

K(t, f; 4 p0 (w0), 4 p1 (w1)),

for 0<pi<�, by using the fact that 4 p(w)=L0(0)E; S where Sf =f * and
E=Lp(w).

We have the following result.

Theorem 11. If, for every t>0, there exists at # [0, �] such that

\|
at

0

w0(s)
W1(s) p0 �p1

ds+
1�p0

�t, and (10)

\ W1(at)
W0(at)

p1 �p0
+|

�

at

w1(s)
W0(s) p1 �p0

ds+
1�p1

�
1
t

, (11)

then

K(t, f; 4 p0 (w0), 4 p1 (w1))

r\|
at

0
f *(s) p0 w0(s) ds+

1�p0

+t \|
�

at

f *(s) p1 w1(s) ds+
1�p1

(12)

for all f # 4 p0 (w0)+4 p1 (w1).

Proof. According to Theorem 4, it is sufficient to prove that (5) holds
with B0=(0, at) and B1=[at , �). In fact, we have that

gi (x) :=&hD(x, } )&(Lpi
(wi ))

D=&/(0, x] &Lpi
(wi )=W i (x)1�pi,
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and, hence, by (10),

sup
t>0

1
t

&/(0, at ) �g1&(Lp0
(w0 )) D=sup

t>0

1
t \|

at

0

w0(s)
W1(s) p0 �p1

ds+
1�p0

<+�,

and, by (11),

sup
t>0

t &/[at ,�) �g0&(Lp1
(w1 )) D=sup

t>0

t &/(0,at ) �g0(at)+/[at ,�) �g0&Lp1
(w1)

=sup
t>0

t \ W1(at)
W0(at)

p1 �p0
+|

�

at

w1(s)
W0(s) p1�p0

ds+
1�p1

<+�.

It now remains to prove that

& f */B0
&(Lp0

(w0 )) D+t & f */B1
&(Lp1

(w1 )) Dr& f */B0
&Lp0

(w0 )+t & f */B1
&Lp1

(w1 ) ,

i.e., we have to check that

tf *(at) &/(0, at )&Lp1
(w1 ) �& f */B0

&Lp0
(w0 )+t & f */B1

&Lp1
(w1 ) .

But, in view of (11), we have that

W1(at)
1�p1

W0(at)
1�p0

�
1
t

,

which implies

tf *(at) &/(0, at )&Lp1
(w1 ) �& f */B0

&Lp0
(w0 ) ,

and the proof is complete. K

We now look at two special cases of Theorem 11.

Corollary 12. Formula (12), with at such that t=W0(at)
1�p0 W1(at)

&1�p1,
holds in the two following cases.

(a) If wi (t)�Wi (t)�t, a.e., and there exists c>0 so that

W0(t)1�p0

W1(t)1�p1
t&c, (13)

increases.

(b) If there exist :>0 and ;>0 such that :p0<;p1 and W :
0 �W ;

1

increases.
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Proof. (a) The above assumptions yield

\|
at

0

w0(s)
W1(s) p0 �p1

ds+
1�p0

�\|
at

0

W0(s)�s
W1(s) p0 �p1

ds+
1�p0

=\|
at

0 _W0(s)1�p0 s&c

W1(s)1�p1 &
p0

scp0
ds
s +

1�p0

�
W0(at)

1�p0

W1(at)
1�p1

,

and, similarly,

\ W1(at)
W0(at)

p1�p0
+|

�

at

w1(s)
W0(s) p1 �p0

ds+
1�p1

�
W1(at)

1�p1

W0(at)
1�p0

,

and, hence, we have proved (a).

(b) We need to check (10) and (11). Now,

\|
at

0

w0(s)
W1(s) p0 �p1

ds+
1�p0

=\|
at

0 \W0(s):

W1(s);+
p0�;p1 w0(s)

W0(s):p0 �;p1
ds+

1�p0

�
W0(at)

1�p0

W1(at)
1�p1

=t,

and, similarly,

\ W1(at)
W0(at)

p1 �p0
+|

�

at

w1(s)
W0(s) p1 �p0

ds+
1�p1

�
W1(at)

1�p1

W0(at)
1�p0

=
1
t

,

and (b) follows. K

Remark 1. If the spaces 4 pi (wi) are Banach spaces (see [28]) and if the
underlaying measure space is resonant then it holds that (see [6, p. 67]),

wi (t)�
Wi (t)

t
, a.e.

Moreover, condition (13) is a kind of separation property of the spaces that
can be equivalently described in terms of indices (see [26]). Rearrangement
invariant spaces with this kind of separation are considered in [19], [22]
and [26].

We end this section by discussing the possibility to express the K-func-
tional for a pair of weighted Lorentz spaces in terms of the distribution
function instead of the decreasing rearrangement function.
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Define Sf :=*+
f , where *+

f (s) :=+[x: | f (x)|>s]. The weighted Lorentz
spaces 4 p(w), see [10], can also be seen as the set of all measurable func-
tions on a measure space 0, for which

& f &4 p(w) :=\|
�

0
y p&1W(*f ( y)) dy+

1�p

<�.

Hence, to study the pair (4 p0 (w0), 4 p1 (w1)), we may also consider E� :=
(E0 , E1), where

& f &Ei
:=\|

�

0
y pi&1Wi ( f ( y)) dy+

1�pi

.

In order to have no problem with the S-divisibility we assume that

|
�

0
wi (s) ds=+�,

and then 4 pi (wi)=(L0*)Ei ; S . To prove the S-divisibility property, let f # L0*
and .i # D be such that *+

f �.0+.1 . Then

f *+�*m
.0

( } �2)+*m
.1

( } �2),

where m is the Lebesgue measure. By the f [ f * divisibility of L0* with
respect to D and all pairs of lattices E� , we have that there exist fi such that
f =f0+ f1 and ( fi)*+�*m

.i
( } �2)=*m

2.i
and hence

Sfi=*+
fi
�(2.i)*�2.i ,

and the S-divisibility property is proved.
Therefore, by Theorem 2, we obtain that

K(t, f; 4 p0 (w0), 4 p1 (w1))rK(t, *+
f ; E D

0 , E D
1 ).

Similar conditions to (10) and (11) can also be obtained in this setting.
However, they are not so easy to handle in general.

3.4. A Final Application of Theorem 3

By using Theorem 3 we obtain equivalence formulas for the K-functional
for elements f from a cone P of positive functions, for a certain class of
(n+1)-tuples of lattices. The assumption (4) is clearly satisfied, e.g., for the
cone P of all positive functions. Hence to obtain a formula for the K-func-
tional in this case, it suffices to find a family of sets [B(t)] satisfying certain
conditions.
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Here we show how this technique can be used to obtain a description of
the K-functional for weighted lp-spaces if there are some separation between
the weights. (See also [18].)

We define lr(w) as the set of all sequences x=(xn)=(..., x&1 , x0 , x1 , ...)
for which

&x&lr (w) :=\ :
�

i=&�

[xiwi]
r+

1�r

<�,

where 0<r��, w=(wi) and wi>0.

Theorem 13. Let 0<p, q��, u=(ui), ui>0, and v=(vi), vi>0. If

sup
k

card[i: 2k&1�ui�v i<2k]<�, (14)

then

K(t, x; lp(u), lq(v))r&|x| /A&lp (u)+t &|x| /A c &lq (v) ,

where A=[i # Z: ui �vi<t].

Proof. Since lp(u) and lq(v) are lattices it holds that

K(t, x; lp(u), lq(v))=K(t, |x|; lp(u), lq(v))

=inf[&y&lp (u)+t &z&lq (v) : |x|� y+z, y, z�0],

see [8], and hence, we may use Theorem 3 with P as the cone of all positive
sequences. In this case, the function hP(m, n) clearly is the Kronecker delta
function $m, n which is equal to one if m=n and zero otherwise. Now, by
definition, (g0)m :=&hP(m, } )&lp (u) and (g1)m :=&hP(m, } )&lq (v) , which gives
that g0=u and g1=v, respectively. It remains to check that

&/A�v&lp (u) �t and &/Ac�u& lq (v) �1�t.

Let Ak denote the set [i: 2k&1�u i �vi<2k] and C :=supk card Ak , which is
finite by assumption. Choose k0 such that 2k0&1�t<2k0 and it follows that
A/�k0

k=&� Ak and Ac/��
k=k0&1 Ak . Hence,

&/A �v&lp (u)=\ :
i # A

[ui �vi]
p+

1�p

�\ :
k0

k=&�

:
i # Ak

[ui �vi]
p+

1�p

�C \ :
k0

k=&�

2kp+
1�p

�2k0&1�t,
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and

&/Ac �u&lq (v)=\ :
i # A c

[vi �ui]
q+

1�q

�\ :
�

k=k0&1

:
i # Ak

[vi�u i]
q+

1�q

�C \ :
�

k=k0&1

2(1&k) q+
1�q

�2&k0<1�t,

and the proof is complete. K

Note the fact that the ``almost optimal'' decomposition is independent of
p and q. A special case of weights satisfying (14) is if there is an a # (0, 1)
such that i [ aiui�v i is increasing.

The computation of (lp(u), lq(v))�, r , for this type of weights in the case
p, q, r�1 can be found in [14]. However, the proof does not use the
K-functional.

ACKNOWLEDGMENTS

The first named author thanks the Department of Mathematics at Lulea# University for
their kindness and friendship while visiting Lulea# in the period August�December, 1996.
Moreover, we thank Professors Michael Cwikel and Natan Krugljak for some generous
advice connected to this paper. Finally, we thank the referee for some very good advice which
has improved the final version of this paper.

REFERENCES

1. J. Arazy, The K-functional of certain pairs of rearrangement invariant spaces, Bull.
Austral. Math. Soc. 27 (1983), 249�257.

2. I. U. Asekritova, The Holmstedt formula and an equivalence theorem for n-set of Banach
spaces, Yaroslav. Gos. Univ. 165 (1980), 15�18.

3. I. U. Asekritova, Theorems of reiteration and K-divisionable (n+1)-tuples of Banach
spaces, Funct. Approx. Comment. Math. 20 (1992), 171�175.

4. I. U. Asekritova and N. Krugljak, On equivalence of K- and J-methods for (n+1)-tuples
of Banach spaces, Studia Math. 122 (1997), 99�116.

5. J. Bastero and F. J. Ruiz, Elementary reverse Ho� lder type inequalities with application to
operator interpolation theory, Proc. Amer. Math. Soc. 124 (1996), 3183�3192.

6. C. Bennett and R. Sharpely, ``Interpolation of Operators,'' Academic Press, Boston, 1988.
7. J. Bergh and J. Lo� fstro� m, ``Interpolation Spaces,'' Springer-Verlag, Berlin�Heidelberg�New

York, 1976.
8. Yu. A. Brudnyi and N. Ya. Krugljak, ``Interpolation Functors and Interpolation Spaces,''

North-Holland, Amsterdam, 1991.
9. M. J. Carro, S. Ericsson, and L. E. Persson, Real interpolation for divisible cones, Proc.

Edinburgh Math. Soc. (to appear 1999).
10. M. J. Carro and J. Soria, Weighted Lorentz spaces and the Hardy operator, J. Funct.

Anal. 112 (1993), 480�494.

23S-DIVISIBILITY AND HOLMSTEDT FORMULAE



11. J. Cerda� and J. Mart@� n, Interpolation restricted to decreasing functions and Lorentz
spaces, Dept. of Math., Barcelona University, preprint, 1996.

12. J. Cerda� and J. Mart@� n, Interpolation of operators on decreasing functions, Math. Scand.
78 (1996), 233�245.

13. S. Ericsson, Description of some K functionals for three spaces and reiteration, Math.
Nachr., to appear.

14. D. Freitag, Interpolation zwischen lp -Ra� umen mit Gewichten, Math. Nachr. 77 (1977),
101�115.

15. T. Holmstedt, Interpolation of quasi-normed spaces, Math. Scand. 26 (1970), 177�190.
16. H. Hudzik and L. Maligranda, An interpolation theorem in symmetric function F-spaces,

Proc. Amer. Math. Soc. 110 (1990), 89�96.
17. S. G. Krein, Yu. I. Petunin, and E. M. Semenov, ``Interpolation of Linear Operators,''

Amer. Math. Soc. Transl., Vol. 54, Am. Math. Soc., Providence, RI, 1982.
18. B. Jawert, R. Rochberg, and G. Weiss, Commutator and second order estimates in real

interpolation theory, Ark. Mat. 24 (1986), 191�219.
19. L. Maligranda, The K-functional for symmetric spaces, in ``Lecture Notes in Math.,''

Vol. 1070, pp. 169�182, Springer-Verlag, Berlin�New York, 1984.
20. L. Maligranda and L. E. Persson, Real interpolation between weighted L p and Lorentz

spaces, Bull. Polish Acad. Sci. Math. 35 (1987), 765�778.
21. L. Maligranda and L. E. Persson, The E-functional for some pairs of groups, Res. Mat.

20 (1991), 538�553.
22. M. Mastylo, The K-functional for rearrangement invariant spaces and applications, I,

Bull. Polish Acad. Sci. Math. 32 (1984), 53�59.
23. M. Milman, Interpolation of operators of mixed weak-strong type between rearrangement

invariant spaces, Indiana Univ. Math. J. 28 (1979), 985�992.
24. M. Milman, The computation of the K functional for couples of rearrangement invariant

spaces, Result. Math. 5 (1982), 174�176.
25. P. Nilsson, Reiteration theorems for real interpolation and approximation spaces, Ann.

Mat. Pura Appl. 132 (1982), 291�330.
26. L. E. Persson, Interpolation with a parameter function, Math. Scand. 59 (1985), 199�222.
27. J. V. Ryff, Measure preserving transformations and rearrangments, J. Math. Anal. Appl.

31 (1970), 449�458.
28. E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math.

96 (1990), 145�158.
29. R. Sharpley, Spaces 4:(X ) and interpolation, J. Funct. Anal. 11 (1972), 479�513.
30. A. Torchinsky, The K functional for rearrangement invariant spaces, Studia Math. 64

(1979), 175�190.

24 CARRO, ERICSSON, AND PERSSON


	1. INTRODUCTION 
	2. S-DIVISIBILITY PROPERTY AND SOME OF ITS CONSEQUENCES 
	3. APPLICATIONS AND FURTHER RESULTS 
	ACKNOWLEDGMENTS 
	REFERENCES 

